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Les domaines impliqués : Apprentissage automatique, Traitement
de la parole et des langues, vision et robotique, analyse d’image, re-
connaissance d’écriture, analyse de données scientifiques, ...

Objectifs
• Fédérer les équipes de Digicosme qui étudient ces techniques

• Aquérir une connaissance commune:

– des modèles aux applications

– de l’optimisation aux connaissances

• Partager les problématiques

• Mutualiser les expériences

• Développer des outils communs

• Favoriser les collaborations

Les participants : LIMSI-CNRS, LRI, LTCI, LAL, INRIA Saclay, IBISC,
U2IS, CEA, LISV, ...

Principe
Partir des données brutes pour en extraire des représentations

de plus en plus abstraites
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Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

are not conditionally independent of one another given
the layers above and below. In contrast, our treatment
using undirected edges enables combining bottom-up
and top-down information more e�ciently, as shown
in Section 4.5.

In our approach, probabilistic max-pooling helps to
address scalability by shrinking the higher layers;
weight-sharing (convolutions) further speeds up the
algorithm. For example, inference in a three-layer
network (with 200x200 input images) using weight-
sharing but without max-pooling was about 10 times
slower. Without weight-sharing, it was more than 100
times slower.

In work that was contemporary to and done indepen-
dently of ours, Desjardins and Bengio (2008) also ap-
plied convolutional weight-sharing to RBMs and ex-
perimented on small image patches. Our work, how-
ever, develops more sophisticated elements such as
probabilistic max-pooling to make the algorithm more
scalable.

4. Experimental results

4.1. Learning hierarchical representations
from natural images

We first tested our model’s ability to learn hierarchi-
cal representations of natural images. Specifically, we
trained a CDBN with two hidden layers from the Ky-
oto natural image dataset.3 The first layer consisted
of 24 groups (or “bases”)4 of 10x10 pixel filters, while
the second layer consisted of 100 bases, each one 10x10
as well.5 As shown in Figure 2 (top), the learned first
layer bases are oriented, localized edge filters; this re-
sult is consistent with much prior work (Olshausen &
Field, 1996; Bell & Sejnowski, 1997; Ranzato et al.,
2006). We note that the sparsity regularization dur-
ing training was necessary for learning these oriented
edge filters; when this term was removed, the algo-
rithm failed to learn oriented edges.

The learned second layer bases are shown in Fig-
ure 2 (bottom), and many of them empirically re-
sponded selectively to contours, corners, angles, and
surface boundaries in the images. This result is qual-
itatively consistent with previous work (Ito & Ko-
matsu, 2004; Lee et al., 2008).

4.2. Self-taught learning for object recognition

Raina et al. (2007) showed that large unlabeled data
can help in supervised learning tasks, even when the

3http://www.cnbc.cmu.edu/cplab/data kyoto.html
4We will call one hidden group’s weights a “basis.”
5Since the images were real-valued, we used Gaussian

visible units for the first-layer CRBM. The pooling ratio C
for each layer was 2, so the second-layer bases cover roughly
twice as large an area as the first-layer ones.

Figure 2. The first layer bases (top) and the second layer
bases (bottom) learned from natural images. Each second
layer basis (filter) was visualized as a weighted linear com-
bination of the first layer bases.

unlabeled data do not share the same class labels, or
the same generative distribution, as the labeled data.
This framework, where generic unlabeled data improve
performance on a supervised learning task, is known
as self-taught learning. In their experiments, they used
sparse coding to train a single-layer representation,
and then used the learned representation to construct
features for supervised learning tasks.

We used a similar procedure to evaluate our two-layer
CDBN, described in Section 4.1, on the Caltech-101
object classification task.6 The results are shown in
Table 1. First, we observe that combining the first
and second layers significantly improves the classifica-
tion accuracy relative to the first layer alone. Overall,
we achieve 57.7% test accuracy using 15 training im-
ages per class, and 65.4% test accuracy using 30 train-
ing images per class. Our result is competitive with
state-of-the-art results using highly-specialized single
features, such as SIFT, geometric blur, and shape-
context (Lazebnik et al., 2006; Berg et al., 2005; Zhang
et al., 2006).7 Recall that the CDBN was trained en-

6Details: Given an image from the Caltech-101
dataset (Fei-Fei et al., 2004), we scaled the image so that
its longer side was 150 pixels, and computed the activations
of the first and second (pooling) layers of our CDBN. We
repeated this procedure after reducing the input image by
half and concatenated all the activations to construct fea-
tures. We used an SVM with a spatial pyramid matching
kernel for classification, and the parameters of the SVM
were cross-validated. We randomly selected 15/30 training
set and 15/30 test set images respectively, and normal-
ized the result such that classification accuracy for each
class was equally weighted (following the standard proto-
col). We report results averaged over 10 random trials.

7Varma and Ray (2007) reported better performance
than ours (87.82% for 15 training images/class), but they
combined many state-of-the-art features (or kernels) to im-
prove the performance. In another approach, Yu et al.
(2009) used kernel regularization using a (previously pub-
lished) state-of-the-art kernel matrix to improve the per-
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Table 2. Test error for MNIST dataset

Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
object categories (faces, cars, airplanes, motorbikes).
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Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-
recall curve (AUC-PR) for three classification problems
using class-specific object-part representations. (bottom)
Average AUC-PR for each classification problem.
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Figure 5. Histogram of conditional entropy for the repre-
sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference

Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-
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mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.
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Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
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BRNNs

1 Tt-1 t t+1

 bi-directional recurrent neural networks [Schuster and 
Paliwal, 97]  
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 feature extraction: sliding window left-right (+ right-
left for RNNs)

5

Word/Text-line recognition with RNNs/HMMs

 concavity configurations, pixel distribution, B/W 
transitions, histograms of gradient (HoG): 8 directions

 pixel values 

o

Représentations d’un signal audio 
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La Fête de la Science est organisée dans toute la France, à l'initiative
du ministère délégué à la Recherche et à l'Éducation.

The Fête de la Science (science fair) takes place all over France,
on the initiative of the deputy minister for Research and Education.

En pratique
Une réunion de travail mensuelle

• Étude des travaux fondateurs

• Groupe de lecture

• Exposés de travaux scientifiques des participants

• Des présentations invitées

Informations
En savoir plus:

http://gt-deepnet.limsi.fr

Nous rejoindre:

allauzen@limsi.fr
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