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Context

N-grams language models

I Language model :

P̂(w t
1) =

t∏
i=1

P̂(wi |w i−1
1 )

I N-grams : Language is considered a Markovian source

P̂(wi |w i−1
1 ) = P̂(wi |w i−1

i−n+1)

I State-of-the art with smoothing techniques (Knesser-Ney,
deleted interpolation,...) still has issues :

I Data sparsity
I Lack of generalization



Context

Bengio et al, 2003

I Learn a distributed representation words conjointly with
the probability function

I

Figure: Neural architecture of the model



Context

Bengio et al, 2003

I Noting x = (C(wt−1), ...,C(wt−n+1)) the distributed
representation,

I The softmax layers outputs

P̂(wt = i |w t−1
1 ) =

eyi∑
j∈V eyj

I The yi are the un-normalized log-probabilities
corresponding to each word i , such as:

y = W (tanh(Whx + bh)) + b



Context

Bengio et al, 2003

I The objective function is a maximum-likelihood estimator:

L =
1
T

∑
t

log P̂(wt = i |w t−1
1 )

I The model scales linearly with |V | and n



Context

Bengio et Al, 2003

I Perplexity (geometric average of the inverse probability of

the words, P = N

√∏N
i=1

1
P(wt=i|w t−1

1 )
) result up to 25% better

on the Brown corpus
I But there is issues, the main being that computation time

depends linearly in |V | : there is a computational
bottleneck on the output layer because of the normalization
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Noise Contrastive Estimation

Our issue in practice

I Noting w the current word and h the n previous ones
(context), and θ the parameters:

Ph
θ (w) =

eyh
θ (w)∑

w ′∈V eyh
θ (w
′)

I The gradient of the objective function is then for the
contribution of that word w :

∂Lθ(w ,h)
∂θ

= −
∂yh

θ (w)

∂θ
+
∑

w ′∈V

Ph
θ (w

′)
∂yh

θ (w
′)

∂θ



Noise Contrastive Estimation

Issue : Gradient computation

I This gradient can be written :

∂Lθ(w ,h)
∂θ

= −
∂yh

θ (w)

∂θ
+ EPh

θ

[
∂yh

θ

∂θ

]
I The second term is very expensive to compute, since we

need to normalize



Noise Contrastive Estimation

Bengio and Senecal, 2003
Importance sampling

I To estimate an expected value under Ph
θ : use an

un-normalized distribution that is easier to sample from Qh
θ

I Reweight the outputs samples to make the biased
estimator obtained into an unbiased one; weights are given
by the likelihood ratio

r =
yh
θ (w)

Qh
θ (w)



Noise Contrastive Estimation

Bengio and Senecal, 2003
Importance sampling

I After sampling N words from Qh
θ , the expectation is given

by ∑N
i=1 riQh

θ (wi)∑N
i=1 ri

I However, re-weighing makes variance increase, and
controlling the variance with the number of samples makes
learning slow



Noise Contrastive Estimation

Mnih and Teh, 2012
Noise Contrastive Estimation Applied to language modeling

I Idea : to avoid the normalization step necessary to
compute the probabilities

I To do so, we learn to discriminate between the original
data and samples generated from a noise distribution

I Doing this, we can estimate the normalization constant of
the original data distribution, considering it like a parameter



Noise Contrastive Estimation

Posterior probability

I First step: we parametrize the distribution as
un-normalized

Ph
θ (w) = Ph

θ0exp(ch)

I We add to the each example from the data distribution Ph
d

k samples from a known noise distribution Ph
n . Since we

want Ph
θ (w) to fit Ph

d (w), we want to get θ such as

Ph(D = 1|w) =
Ph
θ (w)

Ph
θ (w) + kPh

n (w)



Noise Contrastive Estimation

Objective function

I We then maximize the log-likelihood of this probability
under the mixture of data and noise samples, obtaining the
objective function

Jh(θ) = EPh
d

[
log

Ph
θ (w)

Ph
θ (w) + kPh

n (w)

]
+kEPh

n

[
log

kPh
n (w)

Ph
θ (w) + kPh

n (w)

]



Noise Contrastive Estimation

Gradient

I The obtained gradient is

∂

∂θ
Jh(θ) = EPh

d

[
kPh

n (w)

Ph
θ (w) + kPh

n (w)

∂

∂θ
logPh

θ (w)

]
︸ ︷︷ ︸

D=1

− kEPh
n

[
Ph
θ (w)

Ph
θ (w) + kPh

n (w)

∂

∂θ
logPh

θ (w)

]
︸ ︷︷ ︸

D=0



Noise Contrastive Estimation

Gutmann and Hyvärinen, 2010
A new estimation principle for unnormalized statistical models

I The gradient can be rewritten

∑
w∈V

kPh
n (w)

Ph
θ (w) + kPh

n (w)
× (Ph

d (w)− Ph
θ (w))

∂ log Ph
θ (w)

∂θ

and converges to the maximum likelihood gradient when
k −→∞

I The noise distribution is non-zero wherever the data
distribution is (which is a constraint that importance
sampling also has)

I Under this condition, when maximizing our objective
function, the parameters will behave like if we maximize
the maximum likelihood.



Noise Contrastive Estimation

In practice
Updates

I In practice, for a word w in a context h, with k noise
samples x1, ..., xk , use the formula:

∂

∂θ
Jh,w (θ) =

kPh
n (w)

Ph
θ (w) + kPh

n (w)

∂

∂θ
logPh

θ (w)

−
k∑

i=1

[
Ph
θ (xi)

Ph
θ (xi) + kPh

n (xi)

∂

∂θ
logPh

θ (xi)

]
I The weights given to each ’noise’ contribution are always

between 0 and 1 (as opposed to importance sampling)
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Noise Contrastive Estimation

In practice
To consider

I We have a context dependent normalization parameter ch.
But the distribution associated to each context share
parameters : we need to learn them together.

I It is very difficult to do: however, fixing the normalization
parameter to one (which equals to ch = 0, ∀h) does not
affect the performance



Noise Contrastive Estimation

In practice
Noise distribution

I We must choose a distribution from which it is easy to
sample.

I Choosing a context-independant one seems logical: we
have the choice between uniform and unigram

I In practice, unigram is an excellent compromise and works
far better than uniform



Experiments and results

Context

Noise Contrastive Estimation

Experiments and results

Theano



Experiments and results

Normalization constraint ?

Figure: Evolution of the sum of the un-normalized output of the NCE
model given the epoch

Assumption verified: we still converge to a normalized
distribution



Experiments and results

Effect of the number of noise samples on the test set
perplexity
Brown corpus

Algorithm Type Number of samples Test perplexity
3-Gram - SRILM 336.8
NCE 5 275.1
NCE 10 263.2
NCE 25 254.5
NCE 100 254.6



Experiments and results

SCC training corpus

I Composed of 522 novels from the Gutenberg project (at
http://www.gutenberg.org/)

I Used as training data for the MSR Sentence Completion
Challenge (Zweig and Burges, 2011)

I The corpus is preprocessed and can be used as a
benchmark, on perplexity as well as on the SCC



Experiments and results

SCC
Test example

We took no _ _ _ _ _ to hide it.
I a) fault
I b) instructions
I c) permission
I d) pains
I e) fidelity



Experiments and results

Effect of the size of the context on the test set
perplexity
SCC training corpus

Model Type Context size Test perplexity
3-Gram - Mnih et al. 2 130.8
3-Gram - SRILM 2 129.4
LBL - Mnih et al. 2 145.5
LBL - Mnih et al. 5 129.8
LBL - Mnih et al. 10 124.0
SOUL - NCE 2 135.3
SOUL - NCE 5 118.5
SOUL - NCE 10 121.2



Experiments and results

Noise Contrastive Estimation Model applied to
different sizes of vocabulary
SCC training corpus



Experiments and results

Work still in progress

I Applying NCE to LIMSI’s neural machine translation
framework
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Theano

Theano Introduction

I Python library that focuses on mathematical expressions,
especially using multi-dimensional arrays

I Developed since January 2008 by the LISA lab at
University of Montreal

I Really fast on machine learning problem that involve a lot
of data



Theano

Theano Characteristics/Description
3 main advantages

I Symbolic differentiation: Theano builds symbolic graphs of
expressions and uses them for automatic differentiation

I Various (automatic) optimizations to symbolic expressions,
especially numerical stability

I Use of CPU/GPU, for a very fast execution of most
machine learning algorithm



Theano

Example : theano.function



Theano

Example : Graph

I theano.function is an interface that builds a callable object
from a symbolic graph



Theano

Example : Logistic regression
Variable and graph construction



Theano

Example : Logistic regression
Variable and graph construction



Theano

Example : Logistic regression
Compilation



Theano

Details on differentiation

gw, gb = T.grad(cost, [w, b])

I The grad function works symbolically: it receives and
returns Theano variables.

I It goes through the graph, applying the chain rule at each
’operation’ node to obtain a symbolic expression of the
gradient.



Theano

Community and tutorials

I Website: http://deeplearning.net/software/theano/
I Deep Learning Tutorials:

http://www.deeplearning.net/tutorial/
I (Very active) user mailing list:

http://groups.google.com/group/theano-users



Theano

Neural Language Model: A python framework

I NLTK: Natural language toolkit for python
(http://www.nltk.org/) :

I Language processing: Tokenization, parsing ...
I Contains corpuses (Here, Brown)

I Together with Theano, allows to contain a whole framework
used to train a neural language model within python



Theano

Neural Language Model: A python framework
In practice

I Relatively short and generally high level code to
preprocess the Brown corpus, and train/test the base
neural language model from Bengio et al + some
variations (soon on Deepnet wiki)

I Matches perplexity results, for a very reasonable
computing time
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