Neural Networks for Language Modeling -Noise contrastive Estimation

Matthieu Labeau

LIMSI-CNRS

16 October, 2014

イロト 不良 とくほ とくほう 二日

Context

Noise Contrastive Estimation

Experiments and results

Context

Noise Contrastive Estimation

Experiments and results

N-grams language models

Language model :

$$\hat{P}(w_1^t) = \prod_{i=1}^t \hat{P}(w_i|w_1^{i-1})$$

N-grams : Language is considered a Markovian source

$$\hat{P}(w_i|w_1^{i-1}) = \hat{P}(w_i|w_{i-n+1}^{i-1})$$

- State-of-the art with smoothing techniques (Knesser-Ney, deleted interpolation,...) still has issues :
 - Data sparsity
 - Lack of generalization

Bengio et al, 2003

 Learn a distributed representation words *conjointly* with the probability function

Figure: Neural architecture of the model

э

・ロット (雪) ・ (日) ・ (日)

Bengio et al, 2003

- ► Noting $x = (\mathbf{C}(w_{t-1}), ..., \mathbf{C}(w_{t-n+1}))$ the distributed representation,
- The softmax layers outputs

$$\hat{P}(w_t = i | w_1^{t-1}) = \frac{e^{y_i}}{\sum_{j \in V} e^{y_j}}$$

The y_i are the un-normalized log-probabilities corresponding to each word i, such as:

$$\mathbf{y} = \mathbf{W} \left(tanh(\mathbf{W}_h \mathbf{x} + \mathbf{b}_h) \right) + \mathbf{b}$$

Bengio et al, 2003

The objective function is a maximum-likelihood estimator:

$$L = \frac{1}{T} \sum_{t} \log \hat{P}(w_t = i | w_1^{t-1})$$

The model scales linearly with |V| and n

Bengio et Al, 2003

- ► Perplexity (geometric average of the inverse probability of the words, $P = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_t = i | w_1^{t-1})}}$) result up to 25% better on the Brown corpus
- But there is issues, the main being that computation time depends linearly in |V|: there is a computational bottleneck on the output layer because of the normalization

Context

Noise Contrastive Estimation

Experiments and results

Our issue in practice

Noting w the current word and h the n previous ones (context), and θ the parameters:

$$\mathcal{P}^{h}_{ heta}(w) = rac{\mathbf{e}^{y^{h}_{ heta}(w)}}{\sum_{w' \in V} \mathbf{e}^{y^{h}_{ heta}(w')}}$$

The gradient of the objective function is then for the contribution of that word w:

$$\frac{\partial L_{\theta}(w,h)}{\partial \theta} = -\frac{\partial y_{\theta}^{h}(w)}{\partial \theta} + \sum_{w' \in V} P_{\theta}^{h}(w') \frac{\partial y_{\theta}^{h}(w')}{\partial \theta}$$

э

Issue : Gradient computation

This gradient can be written :

$$\frac{\partial L_{\theta}(w,h)}{\partial \theta} = -\frac{\partial y_{\theta}^{h}(w)}{\partial \theta} + \mathcal{E}_{\mathcal{P}_{\theta}^{h}}\left[\frac{\partial y_{\theta}^{h}}{\partial \theta}\right]$$

The second term is very expensive to compute, since we need to normalize

Bengio and Senecal, 2003 Importance sampling

- To estimate an expected value under P^h_θ: use an un-normalized distribution that is easier to sample from Q^h_θ
- Reweight the outputs samples to make the biased estimator obtained into an unbiased one; weights are given by the likelihood ratio

$$r = \frac{y_{\theta}^{h}(w)}{Q_{\theta}^{h}(w)}$$

э

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Bengio and Senecal, 2003 Importance sampling

> ► After sampling N words from Q^h_θ, the expectation is given by

$$\frac{\sum_{i=1}^{N} r_i Q_{\theta}^h(w_i)}{\sum_{i=1}^{N} r_i}$$

 However, re-weighing makes variance increase, and controlling the variance with the number of samples makes learning slow

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Mnih and Teh, 2012

Noise Contrastive Estimation Applied to language modeling

- Idea : to avoid the normalization step necessary to compute the probabilities
- To do so, we learn to discriminate between the original data and samples generated from a noise distribution
- Doing this, we can estimate the normalization constant of the original data distribution, considering it like a parameter

э

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

Posterior probability

 First step: we parametrize the distribution as un-normalized

$$P^h_{\theta}(w) = P^h_{\theta^0} exp(c^h)$$

We add to the each example from the data distribution P^h_d k samples from a known noise distribution P^h_n. Since we want P^h_θ(w) to fit P^h_d(w), we want to get θ such as

$$P^{h}(D=1|w) = \frac{P^{h}_{\theta}(w)}{P^{h}_{\theta}(w) + kP^{h}_{n}(w)}$$

э

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

Objective function

 We then maximize the log-likelihood of this probability under the mixture of data and noise samples, obtaining the objective function

$$J^{h}(\theta) = E_{P^{h}_{\sigma}} \left[log \frac{P^{h}_{\theta}(w)}{P^{h}_{\theta}(w) + kP^{h}_{n}(w)} \right] + kE_{P^{h}_{n}} \left[log \frac{kP^{h}_{n}(w)}{P^{h}_{\theta}(w) + kP^{h}_{n}(w)} \right]$$

э

・ロット (雪) ・ (日) ・ (日)

Gradient

The obtained gradient is

$$\frac{\partial}{\partial \theta} J^{h}(\theta) = \underbrace{\mathsf{E}_{\mathsf{P}_{d}^{h}} \left[\frac{k\mathsf{P}_{n}^{h}(w)}{\mathsf{P}_{\theta}^{h}(w) + k\mathsf{P}_{n}^{h}(w)} \frac{\partial}{\partial \theta} \mathsf{log}\mathsf{P}_{\theta}^{h}(w) \right]}_{D=1} - \underbrace{\mathsf{k}_{\mathsf{P}_{n}^{h}} \left[\frac{\mathsf{P}_{\theta}^{h}(w)}{\mathsf{P}_{\theta}^{h}(w) + k\mathsf{P}_{n}^{h}(w)} \frac{\partial}{\partial \theta} \mathsf{log}\mathsf{P}_{\theta}^{h}(w) \right]}_{D=0}$$

ヘロン 人間 とくほど 人ほど 一日

Gutmann and Hyvärinen, 2010

A new estimation principle for unnormalized statistical models

The gradient can be rewritten

$$\sum_{w \in V} \frac{k P_n^h(w)}{P_{\theta}^h(w) + k P_n^h(w)} \times (P_d^h(w) - P_{\theta}^h(w)) \frac{\partial \log P_{\theta}^h(w)}{\partial \theta}$$

and converges to the maximum likelihood gradient when $k \longrightarrow \infty$

- The noise distribution is non-zero wherever the data distribution is (which is a constraint that importance sampling also has)
- Under this condition, when maximizing our objective function, the parameters will behave like if we maximize the maximum likelihood.

In practice Updates

In practice, for a word w in a context h, with k noise samples x₁,..., x_k, use the formula:

$$\frac{\partial}{\partial \theta} J^{h,w}(\theta) = \frac{kP_n^h(w)}{P_{\theta}^h(w) + kP_n^h(w)} \frac{\partial}{\partial \theta} log P_{\theta}^h(w)$$
$$-\sum_{i=1}^k \left[\frac{P_{\theta}^h(x_i)}{P_{\theta}^h(x_i) + kP_n^h(x_i)} \frac{\partial}{\partial \theta} log P_{\theta}^h(x_i) \right]$$

The weights given to each 'noise' contribution are always between 0 and 1 (as opposed to importance sampling)

In practice

▲ロト ▲圖 と ▲ 国 と ▲ 国 と 二 国

- We have a context dependent normalization parameter c_h. But the distribution associated to each context share parameters : we need to learn them together.
- It is very difficult to do: however, fixing the normalization parameter to one (which equals to c^h = 0, ∀h) does not affect the performance

ъ

・ ロ ト ・ 雪 ト ・ 目 ト ・

- We must choose a distribution from which it is easy to sample.
- Choosing a context-independant one seems logical: we have the choice between uniform and unigram
- In practice, unigram is an excellent compromise and works far better than uniform

э

ヘロト ヘ戸 ト ヘヨ ト ヘヨ ト

Context

Noise Contrastive Estimation

Experiments and results

Normalization constraint ?

Figure: Evolution of the sum of the un-normalized output of the NCE model given the epoch

Assumption verified: we still converge to a normalized distribution

э

・ロット (雪) (日) (日)

Effect of the number of noise samples on the test set perplexity Brown corpus

Algorithm Type	Number of samples	Test perplexity
3-Gram - SRILM		336.8
NCE	5	275.1
NCE	10	263.2
NCE	25	254.5
NCE	100	254.6

SCC training corpus

- Composed of 522 novels from the Gutenberg project (at http://www.gutenberg.org/)
- Used as training data for the MSR Sentence Completion Challenge (*Zweig and Burges*, 2011)
- The corpus is preprocessed and can be used as a benchmark, on perplexity as well as on the SCC

э

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

We took no ____ to hide it.

- a) fault
- b) instructions
- c) permission
- d) pains
- e) fidelity

Effect of the size of the context on the test set perplexity SCC training corpus

Model Type	Context size	Test perplexity
3-Gram - Mnih et al.	2	130.8
3-Gram - SRILM	2	129.4
LBL - Mnih et al.	2	145.5
LBL - Mnih et al.	5	129.8
LBL - Mnih et al.	10	124.0
SOUL - NCE	2	135.3
SOUL - NCE	5	118.5
SOUL - NCE	10	121.2

Noise Contrastive Estimation Model applied to different sizes of vocabulary

SCC training corpus

æ

Work still in progress

 Applying NCE to LIMSI's neural machine translation framework

Context

Noise Contrastive Estimation

Experiments and results

Theano Introduction

- Python library that focuses on mathematical expressions, especially using multi-dimensional arrays
- Developed since January 2008 by the LISA lab at University of Montreal
- Really fast on machine learning problem that involve a lot of data

Theano Characteristics/Description 3 main advantages

- Symbolic differentiation: Theano builds symbolic graphs of expressions and uses them for automatic differentiation
- Various (automatic) optimizations to symbolic expressions, especially numerical stability
- Use of CPU/GPU, for a very fast execution of most machine learning algorithm

э

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

Example : theano.function

```
import theano
import theano.tensor as T
a = T.dscalar()
b = T.dscalar()
# Create a simple expression
c = a + b
# Convert the expression into a callable object that takes (a,b)
# values as input and computes a value for c
f= theano.function([a,b],c)
```


イロン 不得 とくほ とくほ とうほ

Example : Graph

 theano.function is an interface that builds a callable object from a symbolic graph

イロト 不得 トイヨト イヨト 二日

Example : Logistic regression

Variable and graph construction

```
import numpy
import theano
import theano.tensor as T
rng = numpy.random
N = 400
feats = 784
D = (rng.randn(N, feats), rng.randint(size=N, low=0, high=2))
training_steps = 10000
# Declare Theano symbolic variables
x = T.matrix("x")
y = T.vector("y")
w = theano.shared(rng.randn(feats), name="w")
b = theano.shared(0., name="b")
```


3

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Example : Logistic regression

Variable and graph construction

Construct Theano expression graph
p_1 = 1 / (1 + T.exp(-T.dot(x, w) - b)) # Probability that target = 1
prediction = p_1 > 0.5 # The prediction thresholded
xent = -y * T.log(p_1) - (1-y) * T.log(1-p_1) # Cross-entropy loss function
cost = xent.mean() + 0.01 * (w ** 2).sum() # The cost to minimize
gw, gb = T.grad(cost, [w, b]) # Compute the gradient of the cost

・ロット (雪) ・ (日) ・ (日)

Example : Logistic regression

Details on differentiation

gw, gb = T.grad(cost, [w, b])

- The grad function works symbolically: it receives and returns Theano variables.
- It goes through the graph, applying the chain rule at each 'operation' node to obtain a symbolic expression of the gradient.

Community and tutorials

- Website: http://deeplearning.net/software/theano/
- Deep Learning Tutorials: http://www.deeplearning.net/tutorial/
- (Very active) user mailing list: http://groups.google.com/group/theano-users

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Neural Language Model: A python framework

- NLTK: Natural language toolkit for python (http://www.nltk.org/):
 - Language processing: Tokenization, parsing ...
 - Contains corpuses (Here, Brown)
- Together with Theano, allows to contain a whole framework used to train a neural language model within python

Neural Language Model: A python framework In practice

- Relatively short and generally high level code to preprocess the Brown corpus, and train/test the base neural language model from *Bengio et al* + some variations (soon on Deepnet wiki)
- Matches perplexity results, for a very reasonable computing time

э

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・