Cultural make barrier of ganisms performant uncoscious for the second performance of the second

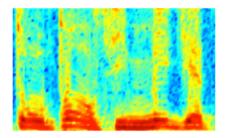
Training Neural Word Embeddings for Transfer Learning and Translation

Stephan Gouws

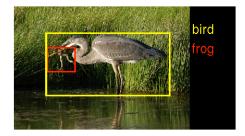
stephan@ml.sun.ac.za

Introduction

AUDIO



IMAGES



TEXT

0 0 0	0.2 0	0.7 0	0	0		•••
-------	-------	-------	---	---	--	-----

Audio Spectrogram

DENSE

Image pixels

DENSE

Word, context, or document vectors

Motivation

Monolingual word embeddings

word

embeddings (this talk)

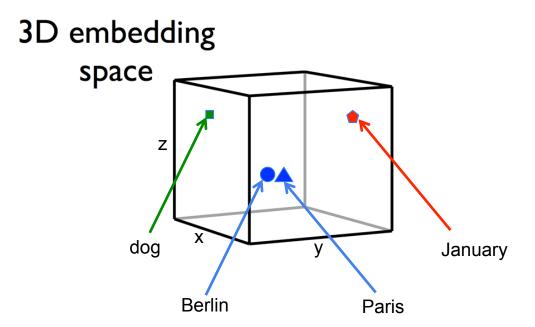
The NLP community has developed good feetines for several tasks, but finding

- task-invariant (POS tagging, NER, SRL); AND
- language-invariant (English, Danish, Afrikaans,..)

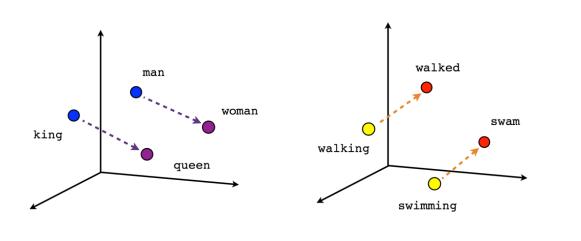
features is non-trivial and time-consuming (been trying for 20+ years).

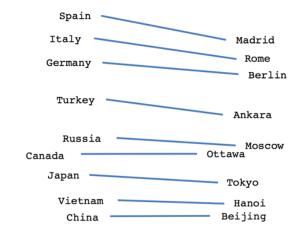
Learn word-level features which generalize across tasks *and* languages.

Word Embeddings



Word Embeddings Capture Interesting, Universal Features





Male-Female

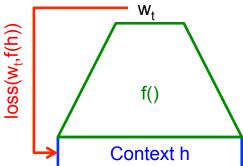
Verb tense

Country-Capital

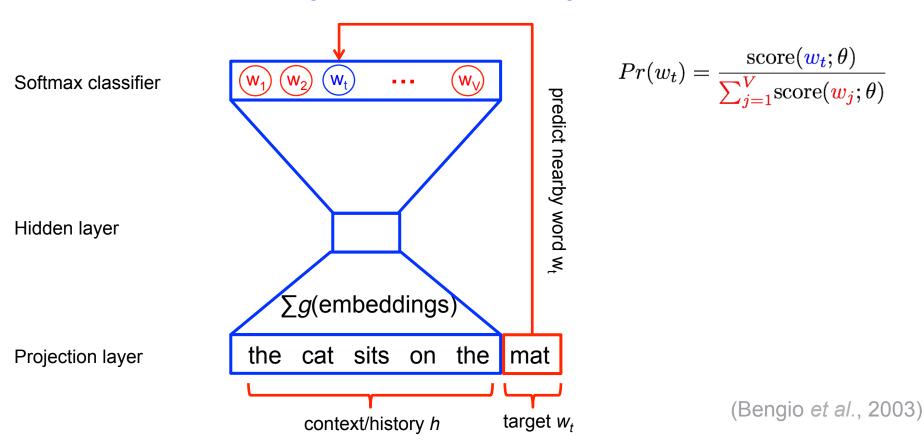
Word Embedding Models

Models differ based on:

- 1. How they compute the context h
 - positional / convolutional / bag-of-words
- 2. How they map context to target $w_t = f(h)$
 - linear, bilinear, non-linear
- 3. How they measure loss_R(w_t, f(h)) and how they're trained
 - language models (NLL, …)
 - word embeddings: negative sampling (CBOW/ Skipgram), sampled rank loss (Collobert+Weston), squared-error (LSA)



Learning Word Embeddings: Pre-2008

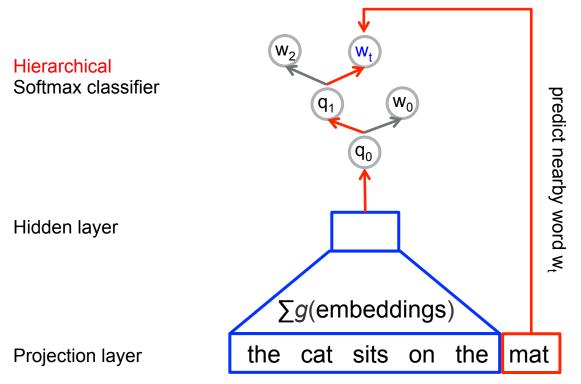


Advances in Learning Word Embeddings

Not interested in language modelling (for which we need normalized probabilities), so we don't need the expensive softmax. Can use much faster

- hierarchical softmax (Morin + Bengio, 2005),
- sampled rank loss (Collobert + Weston, 2008),
- **noise-contrastive estimation** (Mnih + Teh, 2012)
- **negative sampling** (Mikolov et al., 2013)

Learning Word Embeddings: Hierarchical Softmax

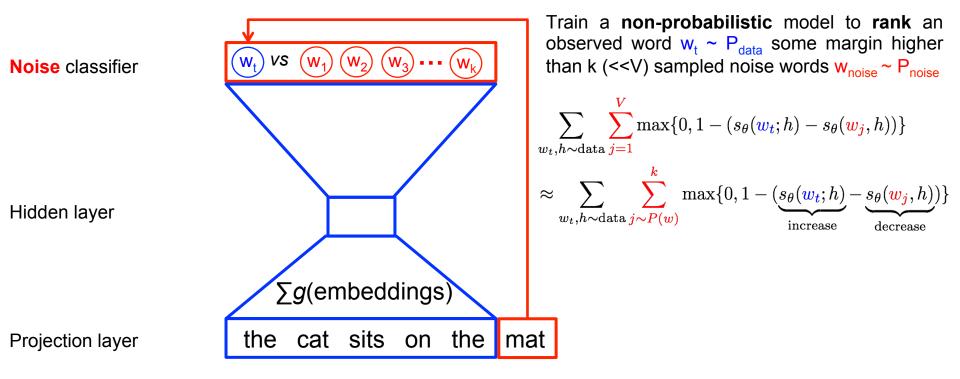


$$P(w_t|h) = \prod_{i \in L(w_t)} P(q_i|h)$$

Significant savings since |L(w)| << V

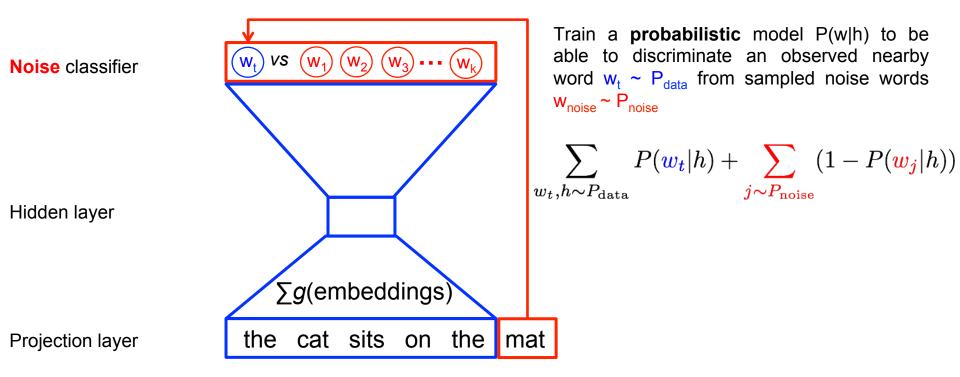
(Morin + Bengio, 2005; Mikolov *et al.*, 2013)

Learning Word Embeddings: Sampled rank loss

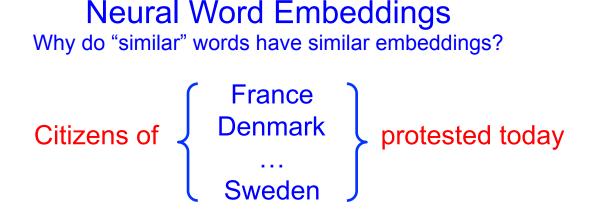


(Collobert + Weston, 2008)

Learning Word Embeddings: Noise-contrastive Estimation



(Mnih + Teh, 2012)

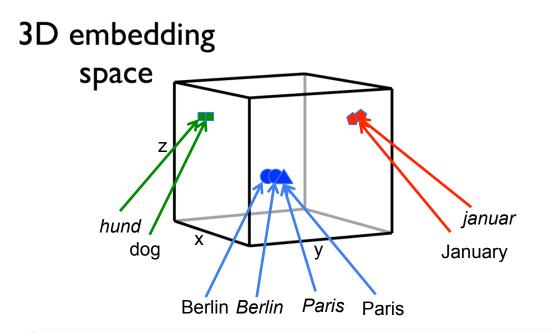


All training objectives have the form:

$$\begin{split} \min_{\mathbf{R}} & \sum_{i} J(\boldsymbol{w}_{t}^{(i)}, \boldsymbol{h}^{(i)}) \\ &= \min_{\mathbf{R}} \sum_{i} \operatorname{distance}(\boldsymbol{w}_{t}^{(i)}, \boldsymbol{h}^{(i)}) \end{split}$$

I.e. for a fixed context, all distributionally similar words will get updated towards a common point.

Cross-lingual Word Embeddings

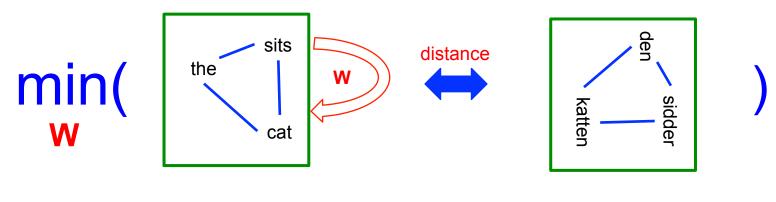


We want to learn an alignment between the two embedding spaces s.t. translation pairs are close.

Learning Cross-lingual Word Embeddings: Approaches

- 1. Align pre-trained embeddings (offline)
- 2. Jointly learn and align embeddings (online) using parallel-only data
- 3. Jointly learn and align embeddings (**online**) using monolingual **and** parallel data

Learning Cross-lingual Word Embeddings I Offline methods: "Translation Matrix"



en

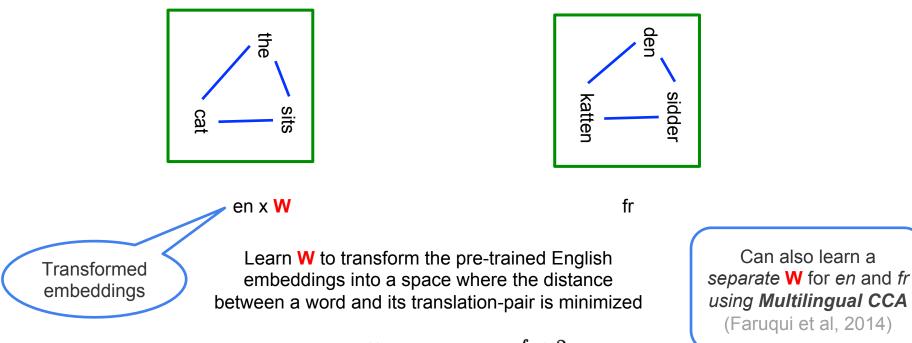
fr

Learn W to transform the pre-trained English embeddings into a space where the distance between a word and its translation-pair is minimized

$$\min_{\mathbf{W}} ||\mathbf{R}^{en}\mathbf{W} - \mathbf{R}^{fr}||^2$$

(Mikolov et al., 2013)

Learning Cross-lingual Word Embeddings I Offline methods



 $\min_{\mathbf{W}} ||\mathbf{R}^{en}\mathbf{W} - \mathbf{R}^{fr}||^2$

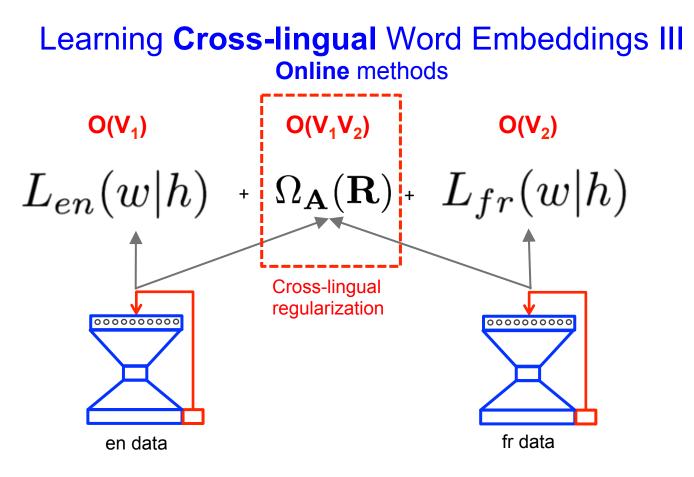
(Mikolov et al., 2013)

Learning Cross-lingual Word Embeddings II Parallel-only methods

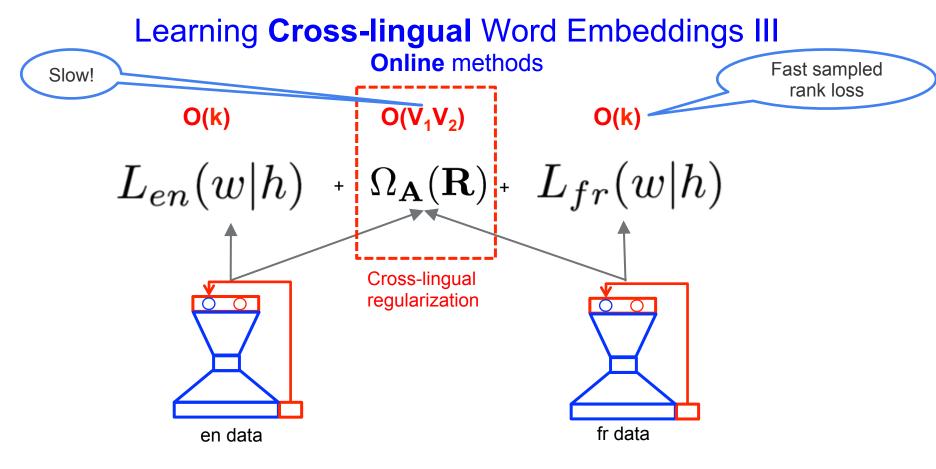
En parallel

Fr parallel

Bilingual Auto-encoders (Chandar *et al.*, 2013) BiCVM (Hermann *et al.*, 2014)



(Klementiev et al., 2012)



(Zhu et al., 2013)

	METHOD	PROS	CONS
-LINE	Translation Matrix <i>(Mikolov et al.</i> 2013)	FASTSimple to implement	 Assumes a global, linear, one- to-one mapping exists between
OFF	Multilingual CCA (Faruqui et al. 2014)		words in 2 languages.Requires accurate dictionaries

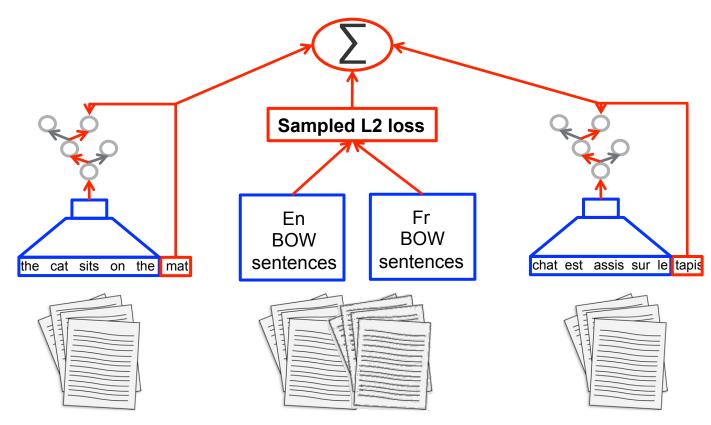
	METHOD	PROS	CONS
OFFLINE	Translation Matrix <i>(Mikolov et al.</i> 2013)	FASTSimple to implement	Assumes a global, linear, <i>one-</i> <i>to-one mapping</i> exists between
	Multilingual CCA (Faruqui et al. 2014)		words in 2 languages.Requires accurate dictionaries
LEL	Bilingual Auto-encoders (Chandar et al. 2014)	Simple to implement (?)	Bag-of-words modelsLearns more semantic than
PARAI	BiCVM (Hermann et al., 2014)	Allows arbitrary differentiable sentence composition function	 syntactic features Reduced training data Big <i>domain bias</i>

	METHOD	PROS	CONS
OFFLINE	Translation Matrix <i>(Mikolov et al.</i> 2013)	 FAST Simple to implement 	Assumes a global, linear, <i>one-</i> <i>to-one mapping</i> exists between
	Multilingual CCA (Faruqui et al. 2014)		words in 2 languages.Requires accurate dictionaries
LLEL	Bilingual Auto-encoders (Chandar et al. 2014)	Simple to implement (?)	Bag-of-words modelsLearns more semantic than
PARAI	BiCVM (Hermann et al., 2014)	Allows arbitrary differentiable sentence composition function	syntactic featuresReduced training dataBig <i>domain bias</i>
INE	Klementiev et al., 2012	Can learn fine-grained, cross-lingual syntactic/	SLOWRequires word-alignments
ONLII	Zhu et al., 2013	semantic features (depends on window- length)	(GIZA++/Fastalign)

	METHOD	PROS	CONS	
OFFLINE	Translation Matrix <i>(Mikolov et al. 2013)</i>	FASTSimple to implement	• Assumes a global, linear, <i>one-</i> <i>to-one mapping</i> exists between	
	Multilingual CCA (Faruqui et al. 2014)		words in 2 languages.Requires accurate dictionaries	
PARALLEL	Bilingual Auto-encoders (Chandar et al. 2014)	Simple to implement (?)	Bag-of-words modelsLearns more semantic than	
	BiCVM (Hermann et al., 2014)	Allows arbitrary differentiable sentence composition function	 syntactic features Reduced training data Big <i>domain bias</i> 	
ONLINE	Klementiev et al., 2012	Can learn fine-grained, cross-lingual syntactic/ semantic features (depends on window- length)	SLOWRequires word-alignments	
	Zhu et al., 2013		GIZA++/Fast (GIZA++/Fast This work makes multilingual distributed feature learning more	
			efficient for transfer learning and translation	

BILBOWA: Fast Bilingual Bag-Of-Words Embeddings without Alignments

BilBOWA Architecture



En monolingual

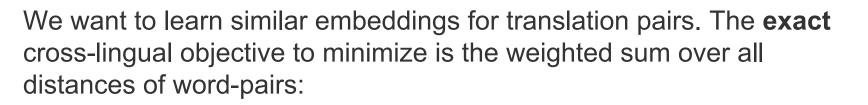
En-Fr parallel

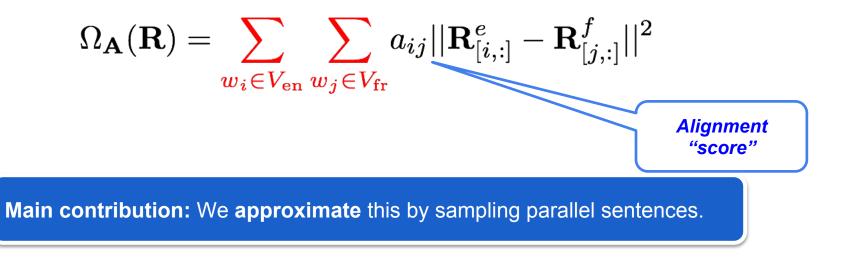
Fr monolingual

The BilBOWA Cross-lingual Objective I

 $L_{en}(w|h) \quad \Omega_{\mathbf{A}}(\mathbf{R}) \quad L_{fr}(w|h)$

en





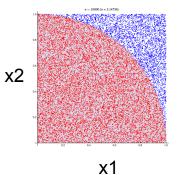
Quick Aside: Monte Carlo integration

$$\mathbb{E}_{p(x)} f(x)$$

$$= \int_{x} p(x) f(x) \text{ (Continuous)}$$

$$= \sum_{x_i} Pr(x_i) f(x_i) \text{ (Discrete)}$$

$$\approx 1/N \sum_{x \sim p(x)} f(x)$$



$$\begin{aligned} & \text{The BilBOWA Cross-lingual Objective II} \\ & \Omega_{\mathbf{A}}(\mathbf{R}) = \sum_{i,j} a_{ij} ||\mathbf{R}^{e}_{[i,:]} - \mathbf{R}^{f}_{[j,:]}||^{2} \\ & = \mathop{\mathbb{E}}_{(i,j)\sim P(w^{e},w^{f})} \left[||\mathbf{R}^{e}_{[i,:]} - \mathbf{R}^{f}_{[j,:]}||^{2} \right] \\ & \approx \frac{1}{S} \sum_{s \in S} \frac{1}{mn} \sum_{(i,j) \in s} ||\mathbf{R}^{e}_{[i,:]} - \mathbf{R}^{f}_{[j,:]}||^{2} \\ \end{aligned}$$

Now we set S = 1 at each time step *t*:

$$\Omega_{\mathbf{A}}^{(t)}(\mathbf{R}) = ||\frac{1}{m} \sum_{i \in s_e} \mathbf{R}_{[i,:]}^e - \frac{1}{n} \sum_{j \in s_f} \mathbf{R}_{[j,:]}^f ||^2$$

mean **en** sentence-vector mean **fr** sentence-vector

Implementation Details: Open-source

Implemented in C (part of word2vec, soon). Multi-threaded: One thread per language (monolingual), and one additional thread per language-pair (cross-lingual) (i.e. **asynchronous SGD**)

Runs at ~10-50K words per second on MBP.

Can process 500M words (monolingual) and 45M words (parallel, recycles) in about 2.5h on my MBP.

Cross-lingual subsampling for better results

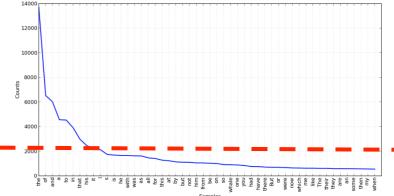
At training step *t*, draw a random number $u \sim U[0,1]$. Then:

$$\Omega_{\mathbf{A}}^{(t)}(\mathbf{R}) = \left\| \frac{1}{m} \sum_{i \in s_e} \mathbb{1}_{u < f(w_i)} \mathbf{R}_{[i,:]}^e - \frac{1}{n} \sum_{j \in s_f} \mathbb{1}_{u < f(w_j)} \mathbf{R}_{[j,:]}^f \right\|^2$$

Want to estimate **alignment** statistics P(e,f). Skewed at the sentence-level by (unconditional) unigram word frequencies.

Simple solution:

Subsample frequent words to flatten the distribution!



Cross-lingual subsampling for better results

Bericht_de Council_en Europäischen de work_en Union_en European_en Mitgliedstaaten_de Member_en :_de other en en ar Rat_de Kommission_de der de de Commission_en such er daß de werden_de nach_de Parlament_de Parliament_en zur_de muss_de important_en des_de auch_de by_en also en </s>_de must_en müssen_de with er zum und de these_en im_de über_de können_de wird de therefore_en new_en von de durch de einem_de den de which en should emake en out_en an de ein d will_en ^{take_en} mit de would en eine_de das_de Frage_de dieser dos en Europäische_de dem_de ,_de be en thie wir_de vor de diasan de. time_en - de /e en Europa_de are en aus_de uns_de policy_en sein de us_en einen_de now_en kann_de it en es de our en alle_de (_en)_en sind_de dies d so_de because_en if_en report_en countries_en about en sehr de)_de (_de very_en er_de zu de howeverbuild wenn_de only_en aber_de nur de hier de there_en^{ot_en} what_en diesem de hat_de have en has_en haben de was_de Sie_de you_en noch de l_en wurde_de was en been_en am_en ich_de when_en als_de man_de like_en my_en möchte_de Frau_de damit_de ?_en States_en or_en </s> en ?_de Mr_en sie_dthey_en President_en oder_de Herr_de ihre_deeir_en who en Präsidentede

Europe_en

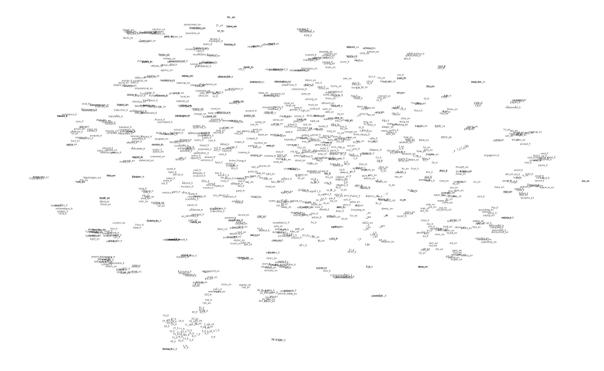
up_en

people_en mehr_mere_en

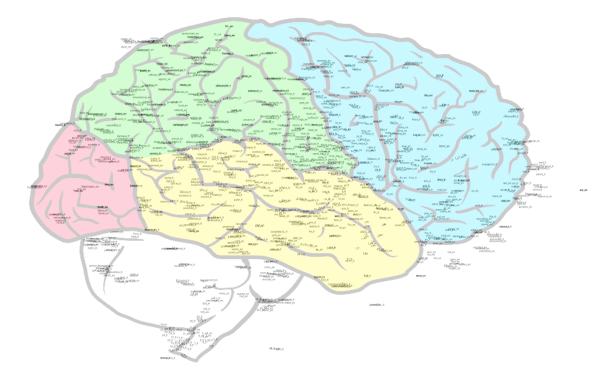
With SS

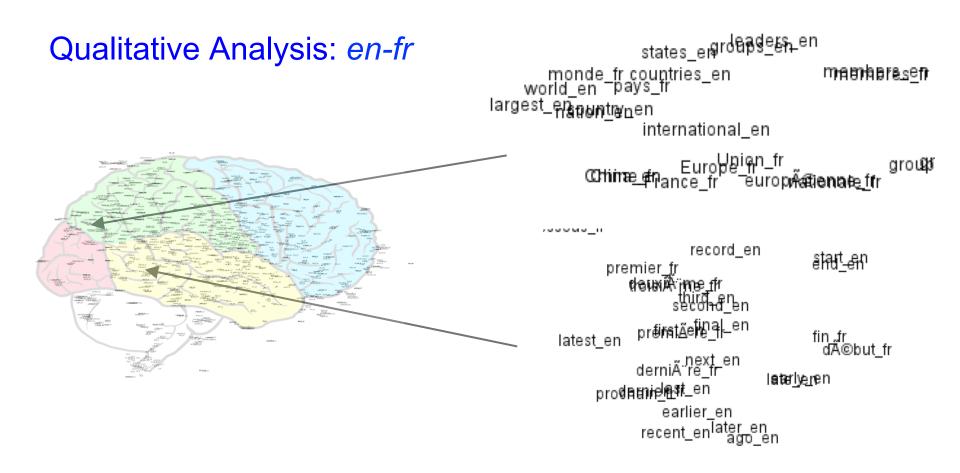
Without SS

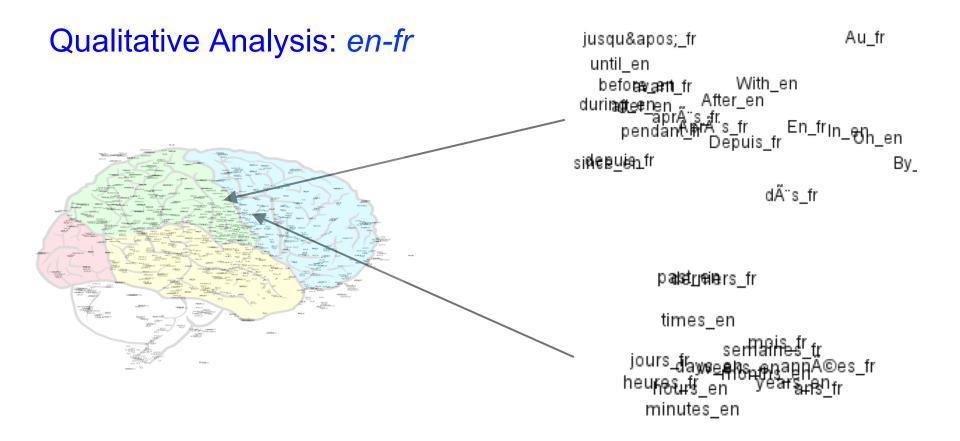
Qualitative Analysis: en-fr t-SNEs I



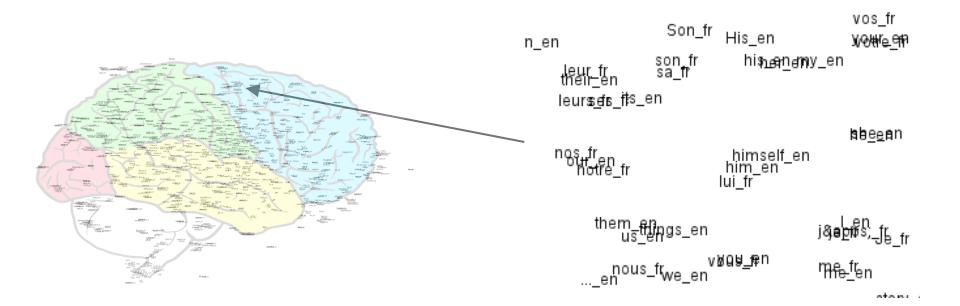
Qualitative Analysis: en-fr t-SNEs I



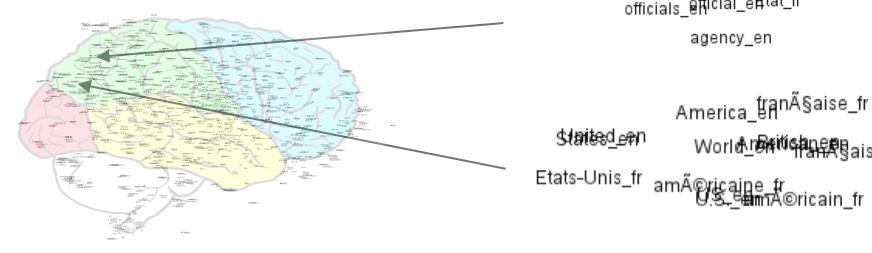




Qualitative Analysis: en-fr



Qualitative Analysis: *en-fr*



World_n@n#itistan_epgaistotp_en

\$taited_en

Experiments: En-De Cross-lingual Document Classification

Exact replication (obtained from the authors) of *Klementiev et al.*'s cross-language document classification setup:

Goal: Classify documents in target language using only labelled documents in source language.

Data: English-German RCV1 data (5K test, 100 - 10K training, 1K validation)

4 Labels:

- CCAT (Corporate/Industrial),
- ECAT (Economics),
- GCAT (Government/Social), and
- MCAT (Markets)

Results: English-German Document Classification

	en2de	de2en	Training Size	Training Time (min)
Majority class	46.8	46.8	-	-
Glossed	65.1	68.6	-	-
МТ	68.1	67.4	-	-
Klementiev et al.	77.6	71.1	50M words	14,400 (10 days)

Results: English-German Document Classification

	en2de	de2en	Training Size	Training Time (min)
Majority class	46.8	46.8	-	-
Glossed	65.1	68.6	-	-
МТ	68.1	67.4	-	-
Klementiev et al.	77.6	71.1	50M words	14,400 (10 days)
Bilingual Autoencoders	91.8	72.8	50M words	4,800 (3.5 days)
BiCVM	83.7	71.4	50M words	15
BilBOWA (this work)	86.5	75	50M words	6

Experiments: WMT11 English-Spanish Translation

- Trained BilBOWA model on En-Es Wikipedia/Europarl data.
 - \circ Vocabulary = 200K
 - \circ Embedding dimension = 40,
 - Crosslingual λ-weight in {0.1, 1.0, 10.0, 100.0}
- Exact replica of (*Mikolov, Le, Sutskever, 2013*):
 - Evaluated on WMT11 lexicon, translated using GTranslate
 - Top 5K-6K words as test set

Experiments: WMT11 *English*→*Spanish* Translation

	Dimension	Prec@1	Prec@5	% Coverage
Edit distance	-	13	24	92.9
Word co-occurrence	-	19	30	92.9
Translation Matrix	300-800	33	51	92.9
BilBOWA (This work)	40	39 (+6%)	51	92.7

Experiments: WMT11 *Spanish*→*English* Translation

	Dimension	Prec@1	Prec@5	% Coverage
Edit distance	-	18	27	92.9
Word co-occurrence	-	20	30	92.9
Translation Matrix	300-800	35	52	92.9
BilBOWA (This work)	40	44 (+11%)	55 (+3%)	92.7

BARISTA: Bilingual Adaptive Reshuffling *with* Individual Stochastic Alternatives

Motivation

Word embedding models learn to predict targets from contexts by clustering similar words into soft (distributional) equivalence classes

For some tasks, we may easily obtain the desired equivalence classes:

- **POS**: Wiktionary
- Super-sense (SuS) tagging: WordNet
- Translation: Google Translate / dictionaries

BARISTA embeds additional task-specific semantic information by corrupting the training data according to known equivalences C(w).

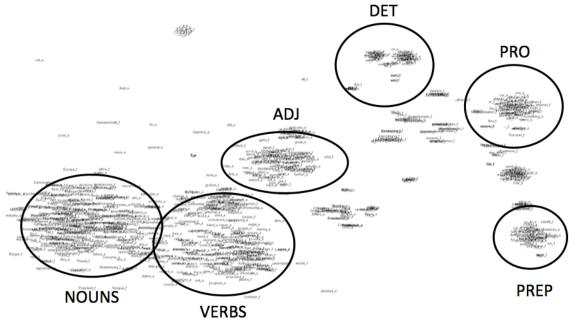
BARISTA Algorithm

Shuffle D_{en} & D_{fr} -> D
 For w in D:
 If w in C then w' ~ C(w) else w' = w
 D' += w'
 Train off-the-shelf embedding model on D'

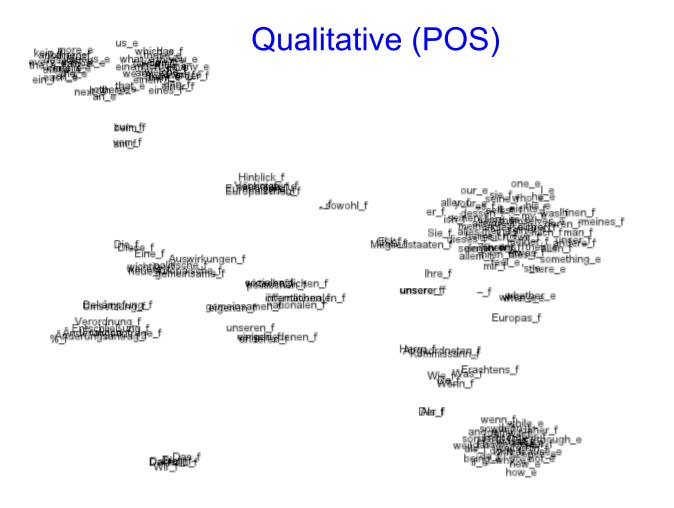
For example: "we build the house":

- 1. we build la voiture / they run la house (POS)
- 2. we construire the maison / nous build la house (Translations)

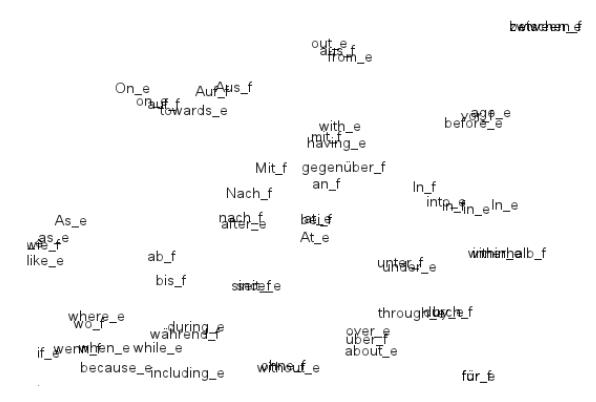
Qualitative (POS)



Parlament_J

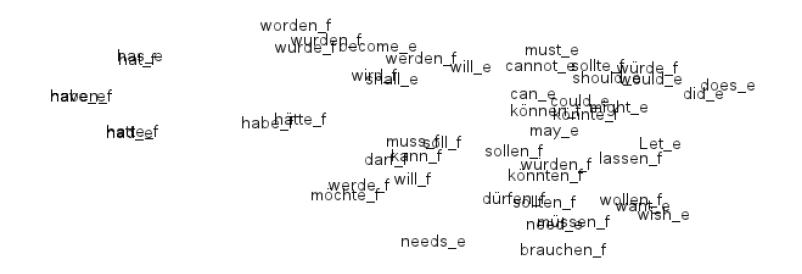


Qualitative (Translations)



Prepositions

Qualitative (Translations)



Modals

Cross-lingual POS tagging

Language	Baseline	Random	Klmtv	POS-50	POS-300	Tr-50	Tr-300	DP	B-K
Spanish	80.6	81.8	79.8	82.4	81	81.6	82.6	84.2	80.2
German	80.4	82.7	82.8	81.8	84.1	82.6	84.8	82.8	81.3
Danish	63	68.9	-	68.9	72.4	71.8	78.4	83.2	69.1
Swedish	71.6	73.7	-	75	76	75.4	77.5	80.5	70.1
Italian	80.1	81.3	-	82.1	80.9	82.1	80.7	86.8	68.1
Dutch	74.5	77.2	-	78.3	77.4	78.7	80.3	79.5	65.1
Portuguese	76.9	78.1	-	77.3	76.1	80.6	80.5	87.9	78.4
Avg	75.3	77.7	-	78	78.3	79	80.7	83.6	73.2

Cross-lingual SuperSense (SuS) tagging

	Baselines		BARISTA		
	MFS	bl	Tr-300	WN-300	
blogs	49.1	46.7	50.5	61.9	
forum	44.5	41.2	45.0	53.9	
magazine	46.5	45.2	50.4	51.5	
newswire	48.4	45.4	52.7	60.9	
reviews	48.4	44.9	50.4	55.8	
speech	51.1	48.4	51.5	58.4	
Avg	48.1	45.4	50.5	58.3	

Conclusion

I presented BILBOWA, an efficient, bilingual word embedding model with an opensource C implementation (part of word2vec, soon) and BARISTA, a simple technique for embedding additional task-specific cross-lingual information.

Qualitative experiments on En-Fr & En-De show that the learned embeddings capture fine-grained cross-lingual linguistic regularities.

Quantitative results on Es, De, Da, Sv, It, N1, Pt for:

- semantic transfer (document classification, xling SuS-tagging)
- lexical transfer (word-level translation, xling POS-tagging)

Thanks!

Questions / Comments?